Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475400

RESUMO

Carbon fiber-reinforced composites are popular due to their high strength and light weight; thus, the structures demonstrate high performance and specific strength. However, these composites are susceptible to impact damage. The objective of this research was to study the behavior of carbon fiber-reinforced laminates based on a polyetheretherketone (PEEK) matrix with six stacking sequences under static and impact loading. Four-point bending, short-beam bending, drop weight impact, and compression after impact tests were carried out. The results were complemented with digital shearography to estimate the damaged areas. Finite element modeling served to assess the failure mechanisms, such as fiber and matrix failure, in different layers due to tension of compression. Three behavior pattern of layups under drop-weight impact were found: (i)-energy redistribution due to mostly linear behavior (like a trampoline) and thus lower kinetic energy absorption for damage initiation, (ii)-moderate absorption of energy with initiation and propagation of concentrated damage with depressed redistribution of energy in the material, (iii)-moderate energy absorption with good redistribution due to initiation of small, dispersed damage. The results can be used to predict the mechanical behavior of composites with different stacking sequences in materials for proper structural design.

2.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904475

RESUMO

Since the inelastic strain development plays an important role in the low-cycle fatigue (LCF) of High-Performance Polymers (HPPs), the goal of the research was to study the effect of an amorphous polymer matrix type on the resistance to cyclic loading for both polyimide (PI)- and polyetherimide (PEI)-based composites, identically loaded with short carbon fibers (SCFs) of various lengths, in the LCF mode. The fracture of the PI and PEI, as well as their particulate composites loaded with SCFs at an aspect ratio (AR) of 10, occurred with a significant role played by cyclic creep processes. Unlike PEI, PI was less prone to the development of creep processes, probably because of the greater rigidity of the polymer molecules. This increased the stage duration of the accumulation of scattered damage in the PI-based composites loaded with SCFs at AR = 20 and AR = 200, causing their greater cyclic durability. In the case of SCFs 2000 µm long, the length of the SCFs was comparable to the specimen thickness, causing the formation of a spatial framework of unattached SCFs at AR = 200. The higher rigidity of the PI polymer matrix provided more effective resistance to the accumulation of scattered damage with the simultaneously higher fatigue creep resistance. Under such conditions, the adhesion factor exerted a lesser effect. As shown, the fatigue life of the composites was determined both by the chemical structure of the polymer matrix and the offset yield stresses. The essential role of the cyclic damage accumulation in both neat PI and PEI, as well as their composites reinforced with SCFs, was confirmed by the results of XRD spectra analysis. The research holds the potential to solve problems related to the fatigue life monitoring of particulate polymer composites.

3.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015792

RESUMO

(1) Background: this study deals with design of an automated laboratory facility based on a servo-hydraulic testing machine for estimating parameters of mechanical hysteresis loops by means of the digital image correlation (DIC) method. (2) Methods: the paper presents a description of the testing facility, describes the grounds for calculating the elastic modulus, the offset yield strength (OYS) and the parameters of the mechanical hysteresis loops by the DIC method. (3) Results: the developed hardware-software facility was tested by studying the fatigue process in neat polyimide (PI) under various amplitude tension-tension loadings. It was found that the damage accumulation was accompanied by the decrease in the loop areas, while failure occurred when it reduced by at least ~5 kJ/m3. (4) Conclusions: it was shown that lowering the loop area along with changing the secant modulus value makes it possible to estimate the level of the scattered damage accumulation (mainly at the stresses above the OYS level). It was revealed that fractography data, namely the pattern and sizes of the fatigue crack initiation and propagation zones, did not correlate well with the dependences of the parameters of the hysteresis loops.

4.
Materials (Basel) ; 15(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806781

RESUMO

The fatigue properties of neat polyimide and the "polyimide + 10 wt.% milled carbon fibers + 10 wt.% polytetrafluoroethylene" composite were investigated under various cyclic loading conditions. In contrast to most of the reported studies, constructing of hysteresis loops was performed through the strain assessment using the non-contact 2D Digital Image Correlation method. The accumulation of cyclic damage was analyzed by calculating parameters of mechanical hysteresis loops. They were: (i) the energy losses (hysteresis loop area), (ii) the dynamic modulus (proportional to the compliance/stiffness of the material) and (iii) the damping capacity (calculated through the dissipated and total mechanical energies). On average, the reduction in energy losses reached 10-18% at the onset of fracture, whereas the modulus variation did not exceed 2.5% of the nominal value. The energy losses decreased from 20 down to 18 J/m3 (10%) for the composite, whereas they reduced from 30 down to 25 J/m3 (17%) for neat PI in the low-cycle fatigue mode. For high-cycle fatigue, energy losses decreased from 10 to 9 J/m3 (10%) and from 17 to 14 J/m3 (18%) for neat PI and composite, respectively. For this reason, the changes of the energy losses due to hysteresis are of prospects for the characterization of both neat PI and the reinforced PI-based composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...